Big Feuds in Mathematics and Something on Computer Science

胡光能

March 3, 2014

引论

• 若想预见数学的未来,正确的方法是研究它的历史和现状。

— Henri Poincaré

• 易有太极,是生两仪。

——《易传》

Selective Feuds

人物	论点	备注
笛卡尔与费马	光学与 几何	方法论
牛顿与 莱布尼兹	微积分	发明权
西尔维斯特与 赫胥黎	数学与 科学	生物学与 数学家
克罗内克与 康托尔	无穷数学	有限, 无穷

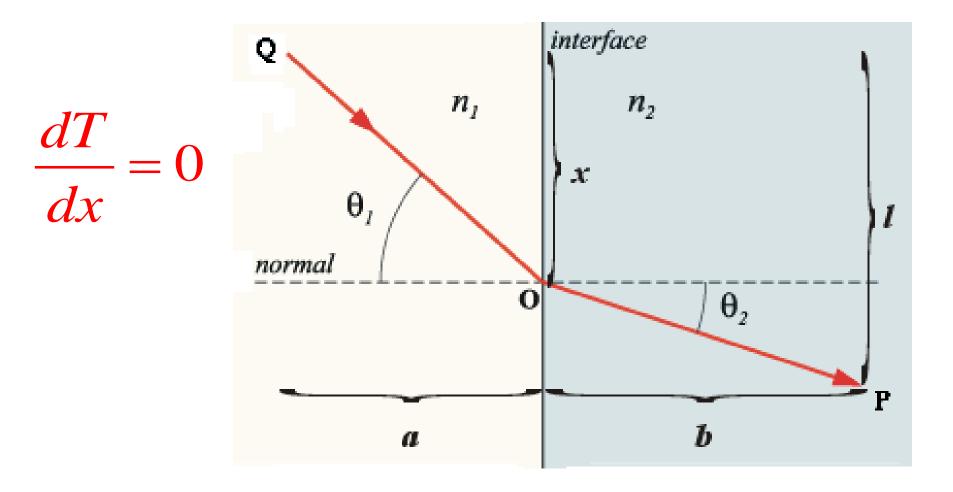
0

笛卡尔与费马

- 笛卡尔(1596-1650)法国人,瑞典女王私人教师
 - 我思故我在。 《方法论》
- 费马(1601-1665)法国人,律师,业余数学家
 - 我发现了一个美妙的证明,但由于空白太小而没有写下来。 <u>费马大定理</u>
- 《方法论》,1637年
 - 折射光学(Dioptrics)。折射定律
 - 几何(Geometry)。解析几何
 - 大气现象。彩虹

0

Dioptrics


• 笛卡尔的成就: 数学假设导出折射定律

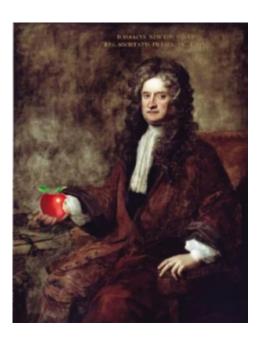
$$\frac{\sin \theta_1}{\sin \theta_2} = n \leftarrow \frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$$

- 费马的批评:
 - 反对物理研究对数学假设的依赖, 重视实验
 - 笛卡尔假设: 光传播速度与介质密度呈正比
- 费马的成就: 费马原理推导出折射定律
 - 费马原理: 光沿着需时最少的路径传播
 - 费马假设: 光的传播速度与介质密度呈反比

\bigcirc

费马原理→折射定律

0


Geometry

- 笛卡尔的成就:解析几何,笛卡尔坐标
 - 从轨迹出发,寻找描述它的方程
- 费马的批评:
 - 笛卡尔在最大/最小值上没有任何研究
- 费马的成就: 费马引理
 - 费马引理: 函数极值点处的导数为零
 - 从方程出发研究轨迹; 求曲线切线: 被牛顿誉 为微积分思想之先驱

牛顿与莱布尼兹

——世纪景观

- 牛顿(1643-1727)
 - 英国人,皇家铸币厂厂长
 - 苹果,万有引力
- 莱布尼兹(1646-1716)
 - 德国人, 律师, 哲学家
 - 在人们有争议的时候, 让我们来计算。 <u>两大梦想</u>

• 微积分发明权,不为利是为名

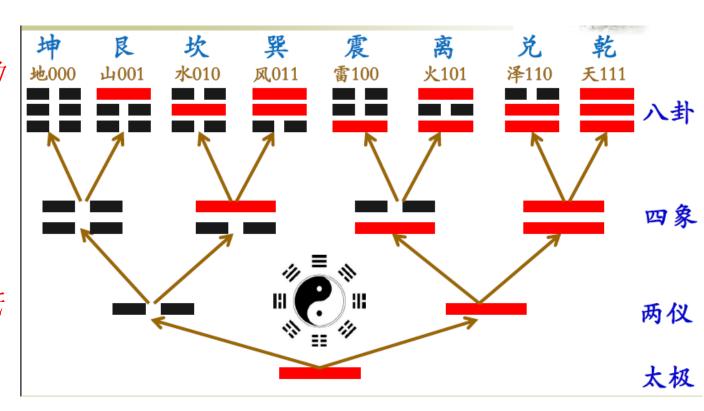
Chronology

牛顿	备注	莱布尼兹	备注
1665,微积分领域的起点	求切线和面积 的通用方法	1673,访问伦 敦	结识惠更斯
1669,微积分早期成果	《无穷级数分析》	1676,请教无穷级数求面积	牛顿礼貌且谨 慎的答复
1687, 微积分的一些应用	《自然哲学的数学原理》	1684,微积分第一篇论文	$dx^{n} = nx^{n-1}$
	收录牛的微积 分文章	1696,追随者 伯努利兄弟	向数学家发出 挑战
1695, 牛转向政治 铸币厂长和皇家学			
牛顿的记号	\ddot{x}	莱的记号	d , \int

Chronology (cont.)

牛顿	备注	莱布尼兹	备注	
1708, 凯尔, 牛顿追随者	牛顿对莱怒了; 控莱抄袭流数	1711,莱请求 皇家学会表态	澄清凯尔的指控"荒唐可鄙"	
1713 ,皇家学 会《通报》	偏袒牛顿	1713,《快报》	回应《通报》	
1713, 凯尔发 文于法国杂志	争斗拉入公众视 野	1713 ,伯努利 兄弟	从数学上批评牛的《原理》	
		1714, 莱《微分的历史和起源》		
1727,《原理》 第三版,删除莱 的全部内容	莱己逝世12年	1716, 莱嘲笑 牛的哲学观念	牛认为宇宙是上 帝上紧发条后的 钟	

公论: 两人各自独立的提出了微积分


总评: 莱输了这场战役, 却赢得了整场战争

More Leibniz: Binary and Dreams

• 手稿, 1679

我的这种不可思议的 新发明,是因为我 发现了一位圣人的 古代文字的秘密, 这位古代圣人, 就是3000年多前, 中早期的君王伏羲氏

• 两个理想

- 通用语言: 所有问题都能在其中表述
- 判定方法: 解决所有通用语言中表述的问题

0

西尔维斯特与赫胥黎

- 西尔维斯特(1814-1897)英国数学家,律师
 - 术语图论, 判别式
 - 西尔维斯特奖章(1901): 庞加莱、康托、罗素
 - 获学生命名的德摩根奖(1884): 克莱因、罗素
- 赫胥黎(1825-1895)英国生物学家,
 - Try to learn something about everything and everything about something
 - 达尔文的斗牛犬Bulldog
 - 家族:作家,教科文首任主席, 诺贝尔生理学奖
 - 胡适: 杜威教他怎样思考, 赫胥黎教其怀疑

赫胥黎眼中的科学与数学

- 科学:观察自然,归纳事实,得出结论
 - 1870年前,神学高于科学;赫让学界和政界重视科学
 - 到1870年,科学就是赫胥黎教授
 - 将道德归入客观知识, 而数学是主观知识!
- 数学: 命题和推论,与科学不在一个层次
 - 数学对观察、实验、归纳和因果律完全无知
 - 对于科学的目的没有用处。将这发表在流行刊物上
- Does Mathematics really Matter?

西尔维斯特的反击

- 论点:赫胥黎对于一个没有研究过的学科,他完全不知道自己在说些什么
- 数学训练观察、归纳和实验
 - 内心世界的观察: 拉格朗日强调数学锻炼观察能力
 - 经验世界的观察:黎曼空间观念的基础完全依赖经验
- 教育上的共同主张:
 - 数学、自然科学和实验科学结合,生动活泼的教授

\bigcirc

"西与赫"之现代版@2013

- 哈佛生物学家Wilson发文于*华尔街日报*:
 - Great Scientist ≠ Good at Math
 - A secret: discoveries emerge from ideas, Not Number-Crunching
- 伯克利数学家Frenkel回应于Slate:
 - Don't Listen to E. O. Wilson
 - Math Can Help You in Almost Any Career. There's No Reason to Fear It
- 题外话: goto to fail, 苹果2014年SSL安全bug

```
if ( (err = SSLHashSHA1.update(&hashCtx,
     &serverRandom) | != 0)
                               编程风格(花括号,对齐)
    goto fail;
if ((err = SSLHashSHA1.update(&hashCtx,
     &signedParams)) != 0)
    goto fail;
    goto fail;
                               编译警告 (死代码)
if ((err = SSLHashSHA1.final(&hashCtx,
     &hashOut)) != 0)
    goto fail;
                           goto (Dijkstra, Knuth)
```

克罗内克与康托尔 ——有限与无穷

- 克罗内克(1823-1891)德国数学家
 - 上帝创造了整数,所有其他数都是人造的
 - 克罗内克积(任意两个矩阵均可运算)
- 康托尔(1845-1918)生于俄国的德国数学家
 - -集合论:数学基础,第三次数学危机
 - "一样大"(等势): 1-1 & onto。 <u>欧几里得:</u> "*整体大于部分"*
 - 希尔伯特: No one shall expel us from the Paradise that Cantor has created

无穷集合论

- 伽利略: 平方数和自然数一样多
 - -每一个平方数都有且仅有它的一个根*(1-1)*
 - -每一个根都有且仅有它的一个平方数 (onto)

1	2	3	•••	n
1	4	9	•••	n^2

- 戴德金: 无穷集合之定义
 - 如果一个集合存在一个子集,使得两者的元素一一对应,那么该集合是无穷集

\bigcirc

康托尔集合论

- 可数无穷: 自然数集是可数无穷集, 势穴。
 - -N维连续空间与1维空间(一条线上的点集)等势
 - "我看到了这点,却不敢相信它"
 - 康托尔编码
- 不可数无穷: 实数集是不可数无穷集, 势入
 - 实数集比自然数集更高一个层次
 - 连续统假设: $2^{\aleph_0} = \aleph_1$
 - 建立以aleph为基础的数字系统
 - 对角线法

\bigcirc

对角线证明法

- 反证法
- 用对角 线构造 一个数

```
r_1 = 0 \cdot \underline{5} \cdot 1 \cdot 0 \cdot 5 \cdot 1 \cdot 1 \cdot 0 \cdot \dots
r_2 = 0 . 4 1 3 2 0 4 3 ...
r_3 = 0 . 8 2 4 5 0 2 6 ...
r_4 = 0 . 2 3 3 <u>0</u> 1 2 6 ...
r_5 = 0 . 4 1 0 7 2 4 6 ...
r_6 = 0 . 9 9 3 7 8 3 8 ...
r_7 = 0 . 0 1 0 5 1 3 5 ...
```

题外话: 停机问题

• 是否存在一个万能程序G,它能判定任意一个程序P在给定输入D上是否停机:

bool G(P, D) { if(P halts on D) return 1; else return 0;}

• 反设G存在,现由G构造一个程序S: void S(D) { if(<u>G(S,D)</u>) {while (1); } else return; }

- 考察S是否能停机:
 - 如果S能停机 → G = 1 → S陷入无穷循环 → S不能停机
 - 如果S不能停机 → G = 0 → S进入else分支 → S能停机
 - 总之: S能停机 ↔ S不能停机!

总结与讨论

- 令人尊敬的数学领域存在Big Feuds
- 巨大的争端推动着数学的发展
- 数学的发展促进科学的发展

- Feuds不在否?
 - Wilson vs Frenkel
- 争端结果对计算机的影响?
 - 微积分之争: 科学论文写作规范
 - 直觉主义: 构造思维

