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Abstract. Statistical machine translation systems perform parameter
learning (i.e. training) basing on automatic translation evaluation meth-
ods, which usually evaluate the translation quality according to one or
more human-translated references. Although producing more references
would improve the coverage of translation choices and lead to improved
training performances, only several references are used due to the cost
of human translation. In this paper, we propose automatic methods to
explore the information among the limited references. By generating a
reference graph (RGraph) from given references, we could automatically
generate exponential number of references. These diverse references make
it possible to better evaluate each individual translations, without using
any other resources. Experiments showed that our RGraph could improve
the evaluation performance and lead to better tuned machine translation
systems. The method could be extended to improve the evaluation with
single reference as well.

Keywords: Machine Translation Evaluation · Reference graph ·
Parameter learning · Evaluation metrics

1 Introduction

Statistical machine translation systems usually need to learn the system para-
meters using some training/tuning algorithms, such as Minimum Error Rate
Training (MERT), Pair-wise Ranking Optimization (PRO) [16,26]. These train-
ing algorithms adjust the parameters so that the output of the system has a
high translation quality. Because the translation quality is hard to evaluate,
early attempts usually employ human to make the quality decision, which is
very expensive and time-consuming [17]. Various metrics have been proposed to
use automatical evaluation methods to replace human decisions, such as Word
Error Rate (WER), BLEU and Translation Edit Rate (TER) [28,31]. These
methods automatically evaluate similarity (or distance) between machine trans-
lation outputs and human-translated references.

Current evaluation methods can be roughly divided into two categories. The
first category of methods are based on sentence-matching. These methods usually
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compute an explicit one-to-one matching between words in the output sentence
and a certain reference. The matching is then evaluated using metrics such as
Levenshtein Distance [4,20,21,31,32] or matching precision and recall [4,11,12].
However, in order to generate an explicit matching, only one unique reference is
considered. If there are multiple references, these methods need to select the one
that is closest to the translation for the matching. This leads to potential prob-
lems when evaluating diverse translations. Because the same source language
word or phrase could have multiple correct translations due to paraphrasing, the
number of correct translations for a given source language sentence grows expo-
nentially w.r.t the length of the sentence. When it is impossible to get an ideally
“close” reference in one of the references, these methods may reach inaccurate
quality decisions. In order to consider diversity in the evaluation process, exter-
nal resources such as paraphrase tables or lexicon analysis are employed [1,4],
but these resources may also bring in noises for the evaluation.

The second category of methods are segment-based. These approaches split
the reference and the output into smaller segments, e.g. n-grams. The transla-
tion quality could be measured by the matching rate of segments, but without
an explicit one-to-one matching [6,15,23,28]. Segment-based methods could nat-
urally consider diverse translations, because the matching segments could come
from any one of the references. However, because the matching of a translation
segment could also come from any part of the reference, especially for those com-
mon function words, the quality measure could be less accurate. Besides, because
the evaluation only focus on segments, the fluency of the whole sentence is less
considered.

In this paper, we propose an evaluation approach that enjoys the benefits of
both the above categories. By splitting the reference into segments and align-
ing them into a Reference Graph, we deeply explore the information inside the
limited references and generate a compact representation that could represents
exponentially many correct translations (Sect. 2). Selecting a path in the graph
determines a certain reference translation; and metrics could be used to calculate
distance between the output and the selected reference (Sect. 3). We also pro-
pose methods that explore monolingual resources to build the reference graph
when only one reference is given (Sect. 2.3). Experiments demonstrate that our
evaluation approach could achieve evaluation results better correlated to human
decisions. Furthermore, tuning with reference graphs significantly improves the
training performance of a large scale machine translation system, in both mul-
tiple reference and single reference settings (Sect. 4).

2 Constructing Reference Graph

The major problem of representing possible translations of a given source sen-
tence by independent references is that it is impossible to enumerate all possible
translations. So the evaluation would be unfair to the sentences with differ-
ent word orders (shown in Fig. 1). Inspired by the practice of using confusion
networks or lattices to represent translations from different systems in system
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Fig. 1. The motivation example. (a) Shows the original 4 references; (b) shows two
different translations: Tran1 is not close to any of the reference, which may lead to
a lower score; Tran2 has several suspicious function words in incorrect places, which
may lead to an overrate; (c) shows the RGraph built from these references, which may
contain proper references for evaluating the quality of translations. In each vertex of
the RGraph, upper cell presents the translations and the lower cell presents the indexes
of the corresponding source part.

combination [5,13,14,18,19,25], we propose to organize the references in a com-
pact representation, named Reference Graph (RGraph) (shown in Fig. 1). With
RGraph, the translation information inside the limited references can be better
explored.

Different from the practice of confusion networks or lattices, which aligns
all other translations to a selected back-bone translation and arrange them in
the same order, we need to keep as many different word orders as possible to
evaluate different translations. As a result, we choose to use the source sentence
as the “back-bone” of the graph and align all possible translations in the refer-
ence to the source sentence. The alignment could be obtained using off-the-shelf
alignment tools such as GIZA++ [27]. With the alignment, the construction of
an RGraph is proceed in two steps: constructing sub-graph from every single
reference, merging sub-graphs into the RGraph.

For convenience, we use the following notations throughout this paper. We
denote the source sentence as f = f1, f2, ..., fl, the reference as r = r1, r2, ..., rn.
The RGraph of f and its reference set R is a directed graph D(f,R), or simply
D, which consists of a vertex set V and an edge set E. Each vertex v in V
represents a translation from source segment (fi, fj) to reference segment (rp, rq),
including two pseudo vertices #s and #e, which denotes the start and the end
of a sentence. Because all references correspond to the same source sentence,
we use source indexes instead of words in each node. So each vertex could be
denoted as 〈(i, j), (rp, rq)〉. Each edge e in E connects two translation segments
that are adjacent in the source side, e.g. from (i, k) to (k + 1, j). A path p is
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made up of one or more vertexes connected by edges. p represents a source
segment together with its translation, which is the concatenation of the source
and target part of all vertexes in the path. Specifically, each path from #s to
#e represents a possible translation of the whole sentence f . We use Ds, Dm

and Dt to represent the directed graph constructed from a single reference, from
monolingual resources and from the translation to be evaluated, respectively.

2.1 Constructing the Sub-graph

With a source sentence f , a reference r and the alignment A between them.
We construct a sub-graph Ds that contains all translation information in the
reference while maintaining the original order of r. The basic idea is to split the
translation into minimum and monotonic blocks, with the reordering information
covered inside each block. Specifically, the following three conditions should be
satisfied: (1) no word in a block is aligned to words in other blocks; (2) the
block is monotonic in both source and target side to its adjacent blocks; (3) the
block is minimum, which means it could not be splitted into smaller blocks. An
example of the block splitting results is in Fig. 2a.

The concept of blocks is the same as Mariño et al. [24], where similar bilingual
n-grams are defined and referred to as tuples. With blocks, the whole sentence
becomes a block sequence, which has the same order in both source and target
side. This monotonic property leads to convenient algorithms for both construct-
ing the graph and performing evaluation. The blocks are required to be minimum
to cover the translation information at the finest level. Then larger segments of
translation could be easily formed by merging consecutive blocks.

Fig. 2. An example of block splitting and sub-graph construction. (a) Shows blocks
splitted according to the alignments for 3 references, respectively, where each underlined
English phrase, together with its source counterpart forms a block; (b), (c) and (d)
show sub-graphs constructed from ref1, ref2 and ref3, respectively, with one vertex to
represent each block.

To construct the sub-graph, we generate a vertex for each block to represent
the source segment (i, j), together with its target translation (rp, rq). These
vertexes are then connected in their original order to form a directed sub-graph,
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Fig. 3. An example of path-based graph search. The example searches in the RGraph
in (a) for the closest reference for the translation in (b), which has a translation graph
Dt shown in (c). We denote, for each vertex, the minEdits on top of it and the
minPath to it by dashed lines. By far, the search proceeds at the are vertex. For the
source span (1,3), the algorithm compares the following three paths “the stands of
them are”, “their attitudes are” and “their stances are”, and selects the second one as
the minPath. Further computation will be based on this selection.

which is the base of building a larger RGraph. Examples of the constructed
sub-graphs are in Fig. 2.

Different from Mariño et al. [24] where NULL-aligned target words are
appended to the previous words, we treat all NULL-aligned words as separate
vertexes and insert them into the sub-graph as well. The ε vertex in Fig. 2c and
the really vertex in Fig. 2d are examples in these cases.

2.2 Merging Sub-graphs

For multiple references, each reference will produce a sub-graph, these sub-graphs
are then merged all together to form the RGraph. The merging process starts
with an empty graph D and iteratively merges each sub-graph Ds into D. The
merging first unions the vertex and edge set of the sub-graph into D, where
vertexes covering the same source block with the same target translation are
considered the same. Then new edges are added between adjacent vertexes in D
and Ds. For example, between vertex A〈(i, k), (rp, rq)〉 and B〈(k+1, j), (rp′ , rq′)〉
in D, an edge will be added from A to B if none of B’s neighbors are NULL-
aligned. It is easy to see that sub-graphs, which have just one path for the
whole sentence, are simple versions of the RGraph. Figure 3a shows the result of
merging three reference sub-graphs in Fig. 2.

2.3 Monolingual Extension of the Graph

In cases where there are only one single reference translation provided for each
source sentence, it might be difficult to perform fair evaluations for diverse trans-
lation outputs. To solve the problem, we propose to enhance the single reference
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by building an RGraph using monolingual information, such as dictionaries,
paraphrase tables, etc.

The single reference is firstly used to generate a sub-graph Ds as in previ-
ous sections. The monolingual resources are then used to generate alternative
translations for each vertex or consecutive vertexes (i.e. paths) in Ds. We create
new vertexes for these alternative translations and add them to an monolingual
graph Dm. Dm could then be merged with Ds to generate the RGraph D as
well, like in Sect. 2.2. Without sentence-level translations, it is not possible to
add edges between vertexes in Dm. So we keep these vertexes unconnected. As a
result, Dm could be seen as a special case of D with only vertexes but no edges.

3 Graph-Based Evaluation Metrics

Note that any given translation to be evaluated could also be transformed into a
sub-graph (denoted by Dt) with the method described in Sect. 2.1. The alignment
between the translation and the source sentence could be obtained by automatic
alignments or as an extra output from the translation process. So the evaluation
task now becomes evaluating the translation in Dt with RGraph D.

The evaluation could be executed in two steps. First, find the closest reference
from the RGraph. Second, evaluate the translation according to the closest ref-
erence, with any metrics. The effectiveness of the two-step approach is evidenced
by the experiment of Human-targeted Translation Error Rate, i.e. HTER [31],
where human translator edits the reference so that it become closer to the given
translation. Here we replace the human editing process with a graph matching
process, which could be performed automatically without relying human editors.

To find the closest reference among the exponentially many possible refer-
ences in the RGraph, we employ edit distance as the measure for closeness and
perform a left-to-right search on the graph. Because the vertexes in D and Dt

may cover different source segments, we use the paths as the basic search units.
The search process is similar to the Dijkstra’s algorithm, except that our

algorithm operates in the path level instead of vertex level. The distance is
computed on-the-fly. As shown in Algorithm 1, for each vertex v, we compute
the path (minPath) in D which ends in v, and has the number minimum of
edits (minEdits). The algorithm starts from the path with a single node #s. It
searches all possible paths according to the ending index of their source side block
(using the priority queue, line 2), so that before calculating the edit distance for
path p, all its prefix paths have been computed. Every time a path p fits a given
path pt in Dt suggests that the two paths cover the same source segment (line
7), thus their target sides could be measured by the edit distance algorithm
(line 8). For any vertex v, only the path with minimum edits will be recorded
for further extension (ensured by condition in line 9). Following computation
would start from the successor of p, taking the previous path p and its minimum
edits as basis (lines 12–13). If current path doesn’t fit any path in Dt, all its
successor will be enumerated to extend the path (lines 15–17). In worst cases,
the extension lasts until the end word #e.
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Algorithm 1. Path-based Graph Search Algorithm
Input: translation graph Dt with Vt, Et and RGraph D with V , E
1: initialize each vertex v ∈ V with v.minEdits ←MAX, v.minPath ← ∅
2: priority queue of paths pq ← ∅ � with the ending index of the source side block as the priority
3: path start ← #s, start.edits ← 0
4: pq.push(start, 0)
5: while pq �= ∅ do
6: path p ← pq.pop(), v ← the last vertex in p
7: if p fits a path pt in Dt then � p and pt cover the same source segment
8: p.edits ← p.edits+ editDistance(p, pt)
9: if p.edits < v.minEdits then
10: v.minEdits ← p.edits, v.minPath ← p
11: for all successor v′ ∈ V of p do � finding shortest paths starting from v′

12: path newp ← v′, newp.edits ← p.edits, newp.prePath ← p
13: pq.push(newp, v′.end) � v′ covers source block (start, end)
14: else � extending p with following vertexes to get a fit with Dt

15: for all successor v′ ∈ V of p do
16: path newp ← p+ v′, newp.edits ← p.edits � p+ v′ means appending v′ to path p
17: pq.push(newp, v′.end) � v′ covers source block (start, end)
Output: backtrace #e.minPath will returns the path with minimum distance

Figure 3 shows an example of the path-based graph search algorithm. Note
that, since the matching between the translation and the references are carried
out for each source span, the spurious function word translations will be more
carefully examined at this stage, compared previous segment-based approaches,
such as BLEU.

4 Experiments

We perform experiments to compare the RGraph-based evaluation metrics we
proposed against three standard and popular metrics: 4-gram case-insensitive
BLEU, TER and Meteor [12,28,31]. Some statistics of the references before and
after the RGraph extension are shown, including the correlation comparisons
between the given metrics and human judgments. Then we present tuning com-
parisons including multiple and single reference cases.

4.1 Correlation with Human Judgments

For the correlation experiments, we use LDC2006T04 (MT03) as the experi-
ment data, which contains 919 source language sentences and 4 references for
each source sentence. Additionally, for each source sentence, 6 machine transla-
tion outputs are provided, together with their human evaluation scores, ranging
from 1 to 5. We use the method in Sect. 2 to build RGraph from the given
4 references for each sentence. Table 1 shows the statistics after the RGraph
extension. Besides 67 sentences (7%) which are not extended, more than 90% of
the sentences get extra references generated. Among them, 263 sentences (29%)
get more than 300 references. The average number of references in the RGraph
reaches 125, which cover a significantly larger set of translation candidates com-
pared to the original 4.
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Table 1. #sents with different #refs after
RGraph extension.

#refs 4 <10 <20 <300 >300 all

#sents 67 168 305 116 263 919
% 7% 18% 33% 13% 29% 100%

Table 2. Comparison of correlations with
human judgment.

Conditions BLEU TER Meteor

w. 4-refs 0.4664 0.5066 0.4865
w. RGraph 0.4739 0.5267 0.4876

Table 3. Experiment data and statistics.

Data Usage Sentences

LDC TM train 8,396,924
Gigaword LM train 14,684,074
MT03 dev 919
MT02 test 878
MT04 test 1,788
MT05 test 1,082

We compute the sentence-level evaluation score for each sentence in the
dataset and calculate the correlations between these scores and the human eval-
uation results (Table 2). The first row shows the evaluation using BLEU, TER
and Meteor on the original 4 references; the second row shows the results using
the same three metrics but on the RGraph. The correlation efficient improves
by a considerable margin for all three metrics, showing that evaluations using
RGraph is closer to human judgment.

4.2 Tuning Experiments

To validate the influence of tuning metrics to the whole translation system,
we perform tuning experiments on a large-scale machine translation task. Our
translation system is an in-house implementation of the hierarchical phrase-
based translation system [9], tuned with MERT [26]. The data used to train and
test is listed in Table 3. The translation model (TM) of the system is trained
on parallel sentences from LDC1, which consists of 8.3 million of sentence pairs.
The Chinese side of the corpora is word segmented using ICTCLAS2. We train
a 5-gram language model (LM) with MKN smoothing [8], on Xinhua portion of
Gigaword. We use multi-reference data MT03 as the development (dev) data,
MT02, MT04 and MT05 as the test data. These data are mainly in the same
genre, avoiding the extra consideration of domain adaptation. All the reported
results are the average of three independent MERT runs with random starting
points [10].

We tune the systems with original BLEU and BLEU with the RGraph exten-
sion (denoted as GBLEU), respectively, and evaluate the translation result using
all previous mentioned metrics (Table 4). Different rows show the evaluation
results in different metrics on all three test sets and their average. The left
and right half of the table present the system tuned with BLEU and GBLEU,
respectively. It could be easily seen that tuning with GBLEU achieves superior
performances in all the listed metrics.
1 including LDC2002E18, LDC2003E14, LDC2004E12, LDC2004T08, LDC2005T10,

LDC2007T09.
2 http://ictclas.nlpir.org/.

http://ictclas.nlpir.org/
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Table 4. Comparisons between tuning with BLEU and GBLEU. “ave” denotes the
average results across three testsets. “Δ-ave” denotes the difference of scores in each
evaluation metric and † indicates statistically significant difference (p < 0.01) between
systems tuned with GBLEU and BLEU, respectively.

Tuned with BLEU Tuned with GBLEU

Evaluate MT02 MT04 MT05 ave MT02 MT04 MT05 ave Δ-ave

BLEU 37.71 37.28 36.65 37.21 37.77 37.49 36.69 37.31 +0.10

1-TER 43.96 43.81 44.07 43.95 44.92† 44.66† 45.04† 44.87 +0.93

Meteor 32.88 32.56 33.03 32.82 33.04† 32.70† 33.33† 33.03 +0.22

GBLEU 26.90 27.01 28.22 27.38 27.73 27.69 28.95 28.13 +0.75

1-GTER 45.57 45.66 45.75 45.66 47.28 47.30 47.36 47.31 +1.65

GMeteor 32.83 32.38 32.63 32.61 33.08 32.68 33.06 32.94 +0.33

Despite the improvement on RGraph-based metrics, it is interesting to notice
that the score increases on all the original metrics computed on the 4 references
(by +0.1 in BLEU, +0.93 in TER and +0.22 in Meteor). This improvement could
only be explained by the improvement of overall system performance. This result
demonstrate that the improvement in evaluation metrics does lead to a stronger
statistical system, which may encourage further investigations in the research of
evaluation metrics.

4.3 Experiments with a Single Reference

To generate RGraphs from single references, we employ the paraphrase table
from Pavlick et al. [29], named PPDB. We use the small size English paraphrase
table in PPDB, which has a higher precision, and only use pairs labeled as
‘Equivalence’ to reduce noisy translations. We construct the monolingual graph
Dm using paraphrases for sub-paths that contain less than 3 vertexes, and merge
Dm to the Ds of the single reference. Similar with previous experiments, we use
BLEU and GBLEU to tune our systems on MT03. The systems are tuned with
each reference, and with the monolingual extension of each reference, respec-
tively. The average results are listed in Table 5. Similar with the results in the
multi-reference case, the system tuned with GBLEU achieves better results in
most of the metrics (by +0.49 in BLEU, +1.40 in TER, etc.). We notice that
the results decrease in Meteor. One possible explanation is that the paraphrase
matching used by Meteor plays a similar role as our monolingual extension.
However, when multiple references is given, our method do explore the refer-
ences better, even when evaluated with Meteor, as shown in Table 4.

Because systems tuned with different references vary in performance, we
further examine those differences (shown in Fig. 4). The error bar shows the
maximum and minimum score in the systems tuned by the each single refer-
ence. Despite the higher average scores, it is easy to see that systems tuned
with GBLEU has a much smaller variance in both BLEU and GBLEU scores,



64 H. Ji et al.

Table 5. Comparisons between tuning with BLEU and GBLEU on single references.
Each score is the results averaged over the system tuned with each of the 4 refer-
ences. “ave” denotes the average results across the three testsets. “Δ-ave” denotes the
difference of scores in each evaluation metric and † indicates statistically significant
difference (p < 0.01) between systems tuned with GBLEU and BLEU, respectively.

Tuned with BLEU Tuned with GBLEU

Evaluate MT02 MT04 MT05 ave MT02 MT04 MT05 ave Δ-ave

BLEU 36.45 36.36 35.94 36.26 36.94 36.89 36.43 36.75 +0.49

1-TER 41.01 41.23 41.54 41.26 42.43† 42.54† 42.99† 42.66 +1.40

Meteor 33.34 33.02 33.48 33.28 33.10 32.79 33.25 33.05 −0.23

GBLEU 25.81 25.94 26.97 26.24 26.40 26.47 27.62 26.83 +0.59

1-GTER 42.61 43.02 42.80 42.81 44.29 44.53 44.55 44.46 +1.65

GMeteor 33.16 32.79 33.00 32.98 32.98 32.63 32.85 32.82 −0.16

Fig. 4. The BLEU(a) and GBLEU(b) scores of the single reference experiments. The
white and shaded pillars indicates system scores (averaged over 4 references) tuned by
BLEU and GBLEU, respectively. The error bars depict the minimum and maximum
scores tuned on each single reference.

compared to systems tuned with BLEU. This result suggests that the tuning
result with single reference may highly depend on the quality of the reference.
Using RGraph as the tuning metric helps to reduce this influence and leads to
generally more stable results.

5 Related Work

There are several related works focusing on other properties or conditions of
the references. Snover et al. [31] proposed to use human edited reference which
could achieve evaluation results better correlated with human decisions. Our
method tries to automatically generate close references instead. Qin and Specia
[30] proposed an approach to explore the information among references. Their
work mainly focuses on selecting essential words or expressions using recurring
information among references; while our work is to increase the coverage of
diverse translations. Albrecht and Hwa [2,3] proposed to use translations from
other machine translation systems or large monolingual corpora or tree banks
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as pseudo references instead of references. They focused on the problem where
no human translations are available.

There are other researches proposing tuning metrics for machine translation.
Chen et al. [7] proposed a metric named PORT, which combines precision, recall
and an ordering metric for better tuning in MT systems. Li et al. [22] used a
dependency-based MT evaluation metric RED for Tuning. These methods could
also be applied in our RGraph approach. With a closer reference generated by
RGraph, it is possible to achieve even better results with these improved tuning
methods.

6 Conclusion

This paper aims at properly evaluating the translation quality of machine trans-
lation outputs. This is a special problem because different from traditional tasks
such as pos-tagging and parsing, there is more than one correct answer in
machine translation tasks. It could be an important issue to consider for tasks
which have similar properties, such as text summarization, language generation
and image caption.

We notice that improving the diversity of the references is important for the
evaluation task as well as the tuning of the system. For statistical machine trans-
lation systems such as the hierarchical phrase based systems, we have demon-
strated that better evaluation metrics do lead to better trained system. It is now
interesting to investigate the translation diversity in other architectures such as
neural machine translation systems.

We use off-the-shelf alignment tools to obtain the alignment between the
references and the source sentence, which is quite noisy for some sentences. We
believe that better alignments could lead to even better evaluation performance.
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China (Nos. 61672277, 61772261), the Jiangsu Research Foundation for Basic Research
(No. BK20170074).

References

1. Agarwal, A., Lavie, A.: Meteor, M-BLEU and M-TER: evaluation metrics for high-
correlation with human rankings of machine translation output. In: Proceedings
of the Third Workshop on Statistical Machine Translation, Columbus, Ohio, pp.
115–118. Association for Computational Linguistics (2008)

2. Albrecht, J., Hwa, R.: Regression for sentence-level MT evaluation with pseudo
references. In: Proceedings of the 45th Annual Meeting of the Association of Com-
putational Linguistics, Prague, Czech Republic, pp. 296–303. Association for Com-
putational Linguistics (2007)

3. Albrecht, J., Hwa, R.: The role of pseudo references in MT evaluation. In: Proceed-
ings of the Third Workshop on Statistical Machine Translation, Columbus, Ohio,
pp. 187–190. Association for Computational Linguistics, June 2008



66 H. Ji et al.

4. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with
improved correlation with human judgments. In: Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, Ann Arbor, Michigan, pp. 65–72. Association for Computational
Linguistics (2005)

5. Bangalore, B., Bordel, G., Riccardi, G.: Computing consensus translation from
multiple machine translation systems. In: 2001 IEEE Workshop on Automatic
Speech Recognition and Understanding, ASRU 2001, pp. 351–354 (2001)

6. Chan, Y.S., Ng, H.T.: MaxSim: performance and effects of translation fluency.
Mach. Transl. 23(2–3), 157–168 (2009)

7. Chen, B., Kuhn, R., Larkin, S.: Port: a precision-order-recall MT evaluation met-
ric for tuning. In: Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics, Long Papers, vol. 1, pp. 930–939. Association for
Computational Linguistics (2012)

8. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. In: Proceedings of the 34th Annual Meeting of the Association for Com-
putational Linguistics, Santa Cruz, California, USA, pp. 310–318. Association for
Computational Linguistics (1996)

9. Chiang, D.: A hierarchical phrase-based model for statistical machine translation.
In: Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics, Ann Arbor, Michigan, pp. 263–270. Association for Computational
Linguistics (2005)

10. Clark, J.H., Dyer, C., Lavie, A., Smith, N.A.: Better hypothesis testing for sta-
tistical machine translation: controlling for optimizer instability. In: Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Portland, Oregon, USA, pp. 176–181. Association
for Computational Linguistics (2011)

11. Denkowski, M., Lavie, A.: Meteor-next and the meteor paraphrase tables: improved
evaluation support for five target languages. In: Proceedings of the Joint Fifth
Workshop on Statistical Machine Translation and MetricsMATR, Uppsala, Swe-
den, pp. 339–342. Association for Computational Linguistics (2010)

12. Denkowski, M., Lavie, A.: Meteor universal: language specific translation evalua-
tion for any target language. In: Proceedings of the Ninth Workshop on Statistical
Machine Translation, Baltimore, Maryland, USA, pp. 376–380. Association for
Computational Linguistics (2014)

13. Du, J., Jiang, J., Way, A.: Facilitating translation using source language para-
phrase lattices. In: Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing, Cambridge, MA, pp. 420–429. Association for Com-
putational Linguistics (2010)
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