
Compressing Neural Networks by Applying
Frequent Item-Set Mining

Zi-Yi Dou, Shu-Jian Huang(B), and Yi-Fan Su

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

141242042@smail.nju.edu.cn, huangsj@nju.edu.cn, suyf@nlp.nju.edu.cn

Abstract. Deep neural networks have been widely used contemporarily.
To achieve better performance, people tend to build larger and deeper
neural networks with millions or even billions of parameters. A natural
question to ask is whether we can simplify the architecture of neural
networks so that the storage and computational cost are reduced. This
paper presented a novel approach to prune neural networks by frequent
item-set mining. We propose a way to measure the importance of each
item-set and then prune the networks. Compared with existing state-of-
the-art pruning algorithms, our proposed algorithm can obtain a higher
compression rate in one iteration with almost no loss of accuracy. To
prove the effectiveness of our algorithm, we conducted several experi-
ments on various types of neural networks. The results show that we can
reduce the complexity of the model dramatically as well as enhance the
performance of the model.

Keywords: Neural networks · Frequent item-set mining · Deep learning

1 Introduction

In recent years, neural networks have been proven to be a powerful tool in many
fields, including object classification [1] and speech recognition [2]. Typically,
people have a tendency to build deeper and larger neural networks. In the field of
computer vision, starting with LeNet-5 which requires 431 thousand parameters
[3], Krizhevsky et al. designed AlexNet with 60 million parameters in 2012 [4]
and Sermanet et al. won the ImageNet competition using 144 million parameters
in 2013 [1]. For natural language processing tasks, a recent state-of-the-art neural
machine translation system requires over 200 million parameters [5].

It is true that enormous amount of parameters dramatically improve the
performance ,but we should be aware that there is significant redundancy in
the parameterization of several deep learning models [6]. Over-parametrization
can also lead to problems like over-fitting which can result in low generaliza-
tion ability. In addition , training and using such large neural networks requires

This work is supported by NSFC No. 61672277, 61472183 and the Collaborative
Innovation Center of Novel Software Technology and Industrialization, China.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 696–704, 2017.
https://doi.org/10.1007/978-3-319-68612-7_79

Compressing Neural Networks by Applying Frequent Item-Set Mining 697

long running time and costs much energy and memory. The trend of applica-
tions of machine learning shifting toward embedded devices, which have limited
storage size and computational ability, makes the problem of utilizing so many
parameters more severe.

All these issues have motivated the idea of neural network compression, which
aims to reduce the storage and energy required to run inference on large neural
networks without losing any accuracy. Several methods have been proposed to
tackle this problem and here we introduce a rather novel way to compress neural
networks based on frequent item-set mining which can be implemented easily and
achieve relatively high compression rate in one iteration.

2 Related Work

Network Pruning. Pruning the parameters from a neural network have been
investigated for several decades. Basically, many of the traditional algorithms,
such as penalty term methods or magnitude based methods, defines a measure
of each connection or node and remove the element with the least effect [7].

In recent years, the deep learning renaissance has prompted a re-investigation
of network pruning for modern models and tasks [8]. Admittedly, a lot of tra-
ditional pruning algorithms can achieve great performance. However, when it
comes to large deep neural networks, the high computational complexity cannot
be tolerated. In 2015, Han et al. proposed an algorithm that can remain efficient
in deep neural networks [9].

Inspired by Han et al.’s paper, several methods have been put forward to prune
the neural networks. DropNeuron [10] adds two more regularization terms into
the objective function and thus makes it possible to delete more neurons in neural
networks. Network Trimming prunes the neurons with zero activation [11].

To our knowledge, no one has ever applied association rule or frequent item-
set generation into pruning neural networks. In addition, only a few papers [8]
discuss their applications in recurrent neural networks, which are widely used in
areas like sentiment analysis or language models.

Frequent Item-Set Mining. Nowadays there are many sophiscated algorithms
for frequent item-set mining. One of the most popular algorithm is Apriori [12].
However, Apriori is inefficient in some scenarios. To resolve the issue, Lin et al.
use MapReduce to accelerate the algorithm [13]. Cut-Both-Ways (CBW) algo-
rithm first finds all frequent item-sets of a pre-defined length and then employs
search in both directions [14]. However, these methods all have exponential com-
plexity and thus cannot be applied in large scale problem.

3 Our Proposed Methods

In this section, we first give a brief overview of frequent item-set mining. Then we
illustrate how to apply it in neural networks. Finally we propose our algorithm
based on frequent item-set mining.

698 Z.-Y. Dou et al.

3.1 Frequent Item-Set Mining Task

Frequent item-set mining is often regarded as the first part of association rule
mining. the problem of frequent item-set mining can be defined as [15]:

Let IT = {it1, it2, ..., itn} be a set of n binary attributes called items. and
D = {t1, t2, ..., tm} be a set of transactions called the database.

Each transaction in D has a unique transaction ID and contains a subset of
the items in IT . Suppose T is a set of transactions of a given database, then the
support of an item-set X with respect to T is defined as the proportion of trans-
actions t in the database which contains item-set X, which can be expressed as

Supp(X) =
|{t ∈ T ;X ⊂ t}|

|T | . (1)

The task of frequent item-set mining is to discover all item-sets that satisfy
a user-specified minimum support minsup.

3.2 Frequent Item-Set Mining in Neural Networks

Symbols and Definitions. In this section, we first introduce some symbols
and definitions which will be used in later parts of the paper. Since our strategy
prunes the neural networks layer by layer, without loss of generality, the following
parts all consider one single layer.

Suppose the layer consists of m input nodes I = {i1, i2, ..., im} and n outputs
nodes O = {o1, o2, ..., on}, its weight matrix can be represented as a m×n matrix
W . In order to express whether there exists an connection between two nodes,
we need an extra connection matrix C, where C is an m×n boolean matrix and
Cab = 1 if and only if the output node ob is connected to the input node ia.

Therefore, the layer L can be represented as a tuple < I,O,W,C >. Normally,
for a fully connected layer, the elements of C all equal to one and our mission is
to turn as many elements in C into zero as possible without the loss of accuracy.

Item-Sets in Neural Networks. In order to apply frequent item-set mining
into pruning neural networks, we must first construct item-sets in neural net-
works. Based on the definition above, given a layer L =< I,O,W,C >, each
input node is connected to several output nodes Si, namely a subset of O. Each
element oi in O can be considered as an item. Thus, we can delete some nodes
from Si and take the rest of the nodes as an item-set. In the end, we can con-
struct m item-sets in total, which is then viewed as our set of transactions T .
In our approach, we specify a constant ε in advance and delete the nodes whose
absolute value of weights of connections to the input node are smaller than ε,
i.e.

oi ∈ tj ⇔ |Wij | > ε, for each tj ∈ T

In order to make this point clear, let’s consider a fully connected layer whose
m = 5 and n = 4. The weight matrix is shown in Fig. 1.

Compressing Neural Networks by Applying Frequent Item-Set Mining 699

Fig. 1. Three steps to apply frequent item-set mining in neural networks: separate each
row of W , view each ok as an item; construct set of transactions T ; applying frequent
item-set mining algorithm directly.

We view each output node as an item. First, we consider each row separately
and those connections whose weights less than ε = 0.2 are removed from the
item-sets. In the end, we get five item-sets from this layer.

Frequent Item-Set Mining in Neural Networks. Once we have constructed
the item-sets, we can directly use current frequent item-set mining algorithms
like Apriori to find out all the item-sets whose support is greater than the pre-
defined minsup. Then we can select the top m item-sets with the highest support
so that the basic architecture of neural networks remain the same.

Again, let us consider the previous example. After applying frequent item-set
mining, the result is shown in Fig. 1.

Importance Measure of Item-Sets. The support of one item-set cannot be
the only measure. If one item-set is frequent, i.e. its support is greater than a
constant, then all its subsets are frequent. Therefore, the sets with few elements
always have the highest support. As we can see from the figure, three out of
five frequent item-sets only consist of one element. To fix the issue, we should
measure the importance of an item-set not only in terms of its support. Here we
propose an importance measure of an item-set S:

Importance(S) =
|{t ∈ T ;S ⊂ t}|

|T | + λ ∗ e|S|/n (2)

Here n denotes the total number of output nodes, T represents the item-sets
constructed from neural networks and λ is a pre-defined hyper-parameter. The
first term on the right side is the original definition of support and the second
term tries to model the effect of the size of one item-set. In this way, we hope
the length of item-sets will counteract the influence of support.

3.3 FIMP Algorithm

The naive idea is to first use frequent item-set mining algorithm such as Apriori
to calculate the support of each item-set and then re-rank all the remaining
item-set according to their importance as defined in Eq. 2. Finally, we select m
item-set with the highest importance.

700 Z.-Y. Dou et al.

However, we should be aware that this simple idea has some potential draw-
backs. First, the computational cost is growing exponentially. Second, the item-
sets cannot be repetitive, which means that in extreme cases where m >> n,
there will be not enough item-sets.

Here we improve our former idea and propose an algorithm that can solve
all the drawbacks mentioned above. We call it FIMP algorithm, which is short
for Frequent Item-set Mining based Pruning.

In the first step, we construct all the item-sets in every layer as described in
Sect. 3.2, corresponding to the third matrix from the left in Fig. 1. Then, for every
item-set, we apply greedy search or beam search to calculate the importance of
its subsets. Then we choose the subset with largest importance and continue the
above procedure until during the search no subset has higher importance than
the current item-set. The full procedure is shown in Algorithm1. Si is a subset
of S with size(Si) >= size(S) − k, where k is a hyper-parameter.

Algorithm 1. FIMP Algorithm
Input: Neural Network N, ε
Output: Pruned Neural Network PN

1: for each layer with mi × ni nodes do
2: Construct item-sets following the procedure described in Sect. 3.2
3: for each item-set S do
4: while Importance(Si) > Importance(S) do
5: max id = argmax1≤i≤miImportance(Si)
6: S = Smax id

7: end while
8: end for
9: end for

4 Experiment

4.1 Baseline Models

We compare our model with two baseline methods: (1) The method proposed
by Han et al., where they simply remove the connection with least weight [9].
(2) DropNeuron proposed by Pan et al. where they add two more regularization
terms so that more neurons can be removed [10].

We list the percentage of connections left after pruning for each layer L,
represented as WL%, and the performance of the model before and after pruning.

4.2 Deep Antoencoder

First we conducted experiment on deep autoencoder. We considered the image
dataset of MNIST [16]. The number of training examples and test examples are

Compressing Neural Networks by Applying Frequent Item-Set Mining 701

60000 and 10000 respectively, the image sizes are 28 × 28 digit images and 10
classes. We used the same setting as [10], where they use 784 → 128 → 64 →
128 → 784 autoencoder and all units were logistic with mean square error as
loss.

Table 1. Results of pruning autoencoder

WFC1% WFC2% WFC3% WFC4% W total% NMSE
(before)

NMSE
(pruned)

Han et al .∗ 15.18% 46.29% 52.53% 17.54% 18.86% 0.011 0.011

Pan et al .∗ 16.00% 44.47% 54.11% 18.14% 19.50% 0.012 0.012

FIMP 14.27% 29.00% 39.94% 8.95% 13.34% 0.009 0.007

∗ Means the result is cited from Pan et al. [10]

The results can be seen at Table 1. Here we use the standard normalized
mean square error (NMSE) metric, i.e. NMSE =

∑N
t=1(yt−ŷt)

2
∑N

t=1 y2
t

, to evaluate the
prediction accuracy of the model. From the table, we can see that our method
can achieve greater compression rate compared with [9] and [10].

4.3 Fully Connected Neural Networks

We also implemented our algorithm on fully connected neural networks. Here we
mainly focus on the representative neural networks LeNet. LeNet-300-100 is a
fully connected network with two hidden layers, with 300 and 100 neurons each,
which achieves 1.6% error rate on MNIST. Unfortunately, we could not find any
pre-trained model of LeNet-300-100 on TensorFlow and it is hard for us to get
1.6% error rate. So we just use the best model we can find with 98.24% accuracy
and prune it. As we can see from Table 2, our compression rate is still higher
than the other two pruning strategies. Even though our accuracy is a little bit
lower, we should notice that the accuracy is actually higher after pruning, which
suggests that the relatively lower accuracy may result from the unsatisfied initial
model.

Table 2. Results of pruning LeNet-300-100

WFC1% WFC2% WFC3% W total% Accuracy
(before)

Accuracy
(pruned)

Han et al . ∗ ∗ 8% 9% 26% 8% 98.36% 98.41%

Pan et al .∗ 9.56% 11.16% 54.5% 9.91% 98.13% 98.17%

FIMP 6.19% 19.00% 38.50% 7.76% 98.24% 98.27%

∗ Means the result is cited from Pan et al. [10]
∗∗ Means the result is cited from Han et al. [9]

702 Z.-Y. Dou et al.

Figure 2 shows the sparsity pattern of the first fully connected layer of LeNet-
300-100 after pruning. The matrix size is 784 ∗ 300 and the white regions of the
figure indicate non-zero parameters. The figure demonstrates how FIMP affects
the network. Since digits are written in the center of image, it is no surprising
that the graph is concentrated in the middle and sparse on the left and right.

Fig. 2. Visualization of the first FC layer’s sparsity pattern of Lenet-300-100.

4.4 Convolutional Neural Networks

LeNet-5 is a convolutional network that has two convolutional layers and two
fully connected layers, which achieves 0.8% error rate on MNIST. Actually, our
algorithm is the same as the other strategy when pruning convolutional lay-
ers, thus we can just compare the performance of three algorithms on the fully
connected layers.

Table 3. Results of pruning LeNet-5

WFC1% WFC2% W total% Accuracy(before) Accuracy(pruned)

Han et al . ∗ ∗ 8% 19% 8% 99.20% 99.23%

Pan et al .∗ 1.44% 16.82% 1.49% 99.07% 99.14%

FIMP 2.95% 17.42% 3.00% 99.05% 99.12%

∗ Means the result is cited from Pan et al. [10]
∗∗ Means the result is cited from Han et al. [9]

The results are shown in Table 3. As we can see from the table, the second
algorithm did quite well in this task, however, our algorithm can still obtain a
similar result which is far better than the first algorithm.

Compressing Neural Networks by Applying Frequent Item-Set Mining 703

4.5 Recurrent Neural Networks

In this experiment we turn our attention to a recurrent neural network and use
it on a challenging task of language modeling. The goal is to fit a probabilistic
model which assigns probabilities to sentences. It does so by predicting next
words in a text given a history of previous words. We use the Penn Tree Bank
(PTB) dataset and perplexity, a common way of evaluating language models, to
evaluate the performance of models. We use LSTM model with 2 layers and the
hidden size is set to 200 (Table 4).

Table 4. Results of pruning LSTM on language model

W total% Perplexity(before) Perplexity(pruned)

Han et al . 10.21% 115.910 109.032

Pan et al . 11.37% 115.910 109.724

FIMP 9.33% 115.910 108.999

As we can see from the table, the perplexity after pruning is clearly lower
than the original one, which indicates better performance of the model.

5 Discussion and Conclusion

In this paper we present a novel way to prune neural network motivated by the
intuition that frequent pattern should be more important. We hope this method
could provide the reader with a new perspective toward pruning neural networks.
Although FIMP has shown promising results, there are still some unfinished
work. For example, we could add constraints that favor the emergence of repeat-
ing connectivity patterns so that higher compression rate could be achieved.
Also, we could try different measure of importance. Right now larger λ in Eq. 2
means more connections would be pruned and more time would be cost. In this
work we set λ to a small value like 1e − 5 and it now takes about half an hour
to prune a fully connected layer on a PC while the other two algorithms only
cost a few seconds. Although compared with training a large neural network this
amount of time is negligible, we may still find some way to speed up FIMP.

References

1. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
Integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv: 1312.6229 (2013)

2. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Kingsbury,
B.: Deep neural networks for acoustic modeling in speech recognition: the shared
views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

http://arxiv.org/abs/1312.6229

704 Z.-Y. Dou et al.

3. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989)

4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

5. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

6. Denil, M., Shakibi, B., Dinh, L., de Freitas, N.: Predicting parameters in deep
learning. In: Advances in Neural Information Processing Systems, pp. 2148–2156
(2013)

7. Augasta, M.G., Kathirvalavakumar, T.: Pruning algorithms of neural networks—a
comparative study. Cent. Eur. J. Comput. Sci. 3(3), 105–115 (2013)

8. See, A., Luong, M.T., Manning, C.D.: Compression of Neural Machine Translation
Models via Pruning. arXiv preprint arXiv:1606.09274 (2016)

9. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems,
pp. 1135–1143 (2015)

10. Pan, W., Dong, H., Guo, Y.: DropNeuron : Simplifying the Structure of Deep
Neural Networks. arXiv preprint arXiv:1606.07326 (2016)

11. Hu, H., Peng, R., Tai, Y.W., Tang, C.K., Trimming, N.: A Data-Driven Neu-
ron Pruning Approach towards Efficient Deep Architectures. arXiv preprint
arXiv:1607.03250 (2016)

12. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev.: Data Min. Knowl.
Discov. 2(6), 437–456 (2012)

13. Lin, M.Y., Lee, P.Y., Hsueh, S.C.: Apriori-based frequent itemset mining algo-
rithms on MapReduce. In: Proceedings of the 6th International Conference on
Ubiquitous Information Management and Communication, p. 76. ACM (2012)

14. Su, J.H., Lin, W.: CBW: an efficient algorithm for frequent itemset mining. In: Pro-
ceedings of the 37th Annual Hawaii International Conference on System Sciences,
2004, p. 9. IEEE (2004)

15. Agrawal, R., Imieliski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD Record, vol. 22, no. 2, pp. 207–216.
ACM (1993)

16. Lecun, Y., Cortes, C.: The mnist database of handwritten digits (2010)

http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1606.09274
http://arxiv.org/abs/1606.07326
http://arxiv.org/abs/1607.03250

	Compressing Neural Networks by Applying Frequent Item-Set Mining
	1 Introduction
	2 Related Work
	3 Our Proposed Methods
	3.1 Frequent Item-Set Mining Task
	3.2 Frequent Item-Set Mining in Neural Networks
	3.3 FIMP Algorithm

	4 Experiment
	4.1 Baseline Models
	4.2 Deep Antoencoder
	4.3 Fully Connected Neural Networks
	4.4 Convolutional Neural Networks
	4.5 Recurrent Neural Networks

	5 Discussion and Conclusion
	References

